AI時(shí)代:推薦引擎正在塑造人類(lèi)

推薦引擎

We shape our tools and afterwards our tools shape us. ——Marshall McLuhan

麥克盧漢說(shuō):“我們塑造了工具,反過(guò)來(lái)工具也在塑造我們。”

我本人不反感AI,也相信人工智能會(huì)開(kāi)創(chuàng)一個(gè)偉大的時(shí)代,但是我們要思考一些東西,至少知道那是什么。本人旨在讓你了解當(dāng)前人工智能應(yīng)用最普遍的智能推薦引擎(Intelligent Recommendation Engine),其背后的設(shè)計(jì)理念,以及一些更深度的思考。關(guān)于理念,它不像技術(shù)要求太多的基礎(chǔ),我盡量不使用專(zhuān)業(yè)術(shù)語(yǔ),所以本文同樣適合程序員以外群體。

從“分類(lèi)”說(shuō)起

以大家熟悉的分類(lèi)信息網(wǎng)為例,像58同城、趕集網(wǎng)。網(wǎng)站把現(xiàn)實(shí)生活中的商品、服務(wù)進(jìn)行分類(lèi)進(jìn)行展示,比如房產(chǎn)、二手車(chē)、家政服務(wù)等。這些內(nèi)容即是現(xiàn)實(shí)世界對(duì)應(yīng)的抽象,我們可以很容易的找到對(duì)應(yīng)關(guān)系。

我們?cè)僖郧舐毦W(wǎng)站為例,像智聯(lián)招聘、BOSS直聘。網(wǎng)站按照職業(yè)把 人分類(lèi),比如程序員、廚師、設(shè)計(jì)師、數(shù)學(xué)家、物理學(xué)家等。

那么現(xiàn)在問(wèn)題出現(xiàn)了,眾所周知,人工智能的完美入門(mén)人才是具有數(shù)學(xué)和計(jì)算機(jī)雙學(xué)位的碩士以上學(xué)歷人才。那么,我們?nèi)绾伟堰@樣的人分類(lèi)呢?我們無(wú)法單一的將其歸入到程序員或者數(shù)學(xué)家,我們無(wú)法為每一個(gè)這樣的復(fù)合型人(slash)進(jìn)行單獨(dú)分類(lèi)。

分類(lèi)產(chǎn)生矛盾。

我們區(qū)分南方人、北方人,所以有地域歧視。我們區(qū)分亞洲人、歐洲人,所以有種族歧視?!胺诸?lèi)”只是人類(lèi)簡(jiǎn)化問(wèn)題邏輯的手段,薛定諤的貓和羅素的理發(fā)師已經(jīng)證明了“分類(lèi)”并不正確。所以在大計(jì)算時(shí)代,我們引入“貼標(biāo)簽”的概念。

貼標(biāo)簽

AI時(shí)代是計(jì)算能力爆炸增長(zhǎng)所帶來(lái)的。在強(qiáng)大的計(jì)算能力面前,我們真的可以針對(duì)每個(gè)人進(jìn)行“分類(lèi)”,它的表現(xiàn)形式就是—貼標(biāo)簽。

30歲以下、程序員、屌絲、奶爸、熬夜、不愛(ài)運(yùn)動(dòng)、公眾號(hào)叫caiyongji、格子襯衫、機(jī)械鍵盤(pán)、牛仔褲……這些可以是一個(gè)程序員的標(biāo)簽。換個(gè)角度,“類(lèi)別”反轉(zhuǎn)過(guò)來(lái)服務(wù)于單獨(dú)的某個(gè)人,這是在計(jì)算能力短缺的時(shí)代所無(wú)法想象的。

傳統(tǒng)的智能推薦引擎對(duì)用戶(hù)進(jìn)行多維度的數(shù)據(jù)采集、數(shù)據(jù)過(guò)濾、數(shù)據(jù)分析,然后建模,而人工智能時(shí)代的推薦引擎在建立模型步驟中加入Training the models(訓(xùn)練、測(cè)試、驗(yàn)證)。

最后,推薦引擎就可以根據(jù)用戶(hù)標(biāo)簽的權(quán)重(可以理解為對(duì)標(biāo)簽的打分,表示側(cè)重點(diǎn)),對(duì)用戶(hù)進(jìn)行精準(zhǔn)推送了。

推薦引擎屬性分化

俗話(huà)是這么說(shuō)的“旱的旱死,澇的澇死”,“飽漢子不知餓漢子饑”,不知道這些俗語(yǔ)我用的恰當(dāng)不恰當(dāng)。我的意思是在智能引擎的推薦下,會(huì)加強(qiáng)屬性?xún)蓸O分化。

我們以程序員為例,選取編程技巧、打游戲、體育運(yùn)動(dòng)、熬夜、看書(shū)五個(gè)維度。經(jīng)過(guò)推薦引擎的“塑造”后如下。

推薦引擎

目前,推薦引擎的算法會(huì)將權(quán)重比較大的標(biāo)簽進(jìn)行優(yōu)先推廣,這就導(dǎo)致原本權(quán)重大的標(biāo)簽得到更多的曝光次數(shù),最終使得權(quán)重大的標(biāo)簽權(quán)重越來(lái)越大,而權(quán)重小的標(biāo)簽在長(zhǎng)時(shí)間的被忽略狀態(tài)下逐漸趨近于零。

推薦引擎行為引導(dǎo)

波茲曼認(rèn)為,媒體能夠以一種隱蔽卻強(qiáng)大的暗示力量來(lái)“定義現(xiàn)實(shí)世界”。其中媒體的形式極為重要,因?yàn)樘囟ǖ男问綍?huì)偏好某種特殊的內(nèi)容,最終會(huì)塑造整個(gè)文化的特征。這就是所謂“媒體即隱喻”的主要涵義。

由于“推薦”機(jī)制的屬性分化,那些高技術(shù)含量的、專(zhuān)業(yè)的、科學(xué)的、真正對(duì)人又幫助的信息被更少的人接觸,而那些簡(jiǎn)單的、輕松的、娛樂(lè)的、裸露的、粗俗的信息被越來(lái)越多的人接觸。

我們看一下具有影響力的百度、今日頭條和微博在今天(2018年1月13日10:04:xx)所推薦的內(nèi)容。我刪除了cookie,使用匿名session,移除我的“標(biāo)簽”。也就是說(shuō),下圖所推薦內(nèi)容對(duì)大部分人適用。

推薦引擎

只要你好奇點(diǎn)擊,你的tittytainment(我翻譯成“愚樂(lè)”,那個(gè)三俗的譯法不要再傳了)屬性權(quán)重就會(huì)越來(lái)越大。娛樂(lè)新聞點(diǎn)擊過(guò)百萬(wàn),科普文章點(diǎn)擊不過(guò)百,這種現(xiàn)象正是推薦引擎的行為引導(dǎo)導(dǎo)致的。

不客氣的說(shuō),百度、今日頭條、微博對(duì)國(guó)民素質(zhì)的影響是有責(zé)任的。

無(wú)關(guān)推薦(Non Relational Recommendation)

對(duì)于你從來(lái)都沒(méi)思考過(guò)的事物,你可能永遠(yuǎn)都接觸不到,因?yàn)槟悴恢狼笏鞯穆窂?,所以有的人每個(gè)月都讀與自己專(zhuān)業(yè)無(wú)關(guān)的書(shū),來(lái)擴(kuò)展自己的知識(shí)面。我們舉個(gè)例子:

你可能會(huì)在網(wǎng)上搜索如何與女朋友和諧相處但你未必會(huì)搜索如何讓女朋友們和諧相處,有人笑談“貧窮限制了我的想象力”,其實(shí)不然,是你接收不到無(wú)關(guān)的推薦,你才被限制在特定的知識(shí)圈子里。

所以我提出無(wú)關(guān)推薦這個(gè)概念。

對(duì)程序員進(jìn)行畫(huà)像:

推薦引擎

如圖,當(dāng)某個(gè)標(biāo)簽沒(méi)有到達(dá)“程序員”的路徑時(shí),他可能永遠(yuǎn)無(wú)法觸及那個(gè)標(biāo)簽。這時(shí),我們推薦“無(wú)關(guān)”信息給用戶(hù),強(qiáng)制產(chǎn)生路徑。

你可能會(huì)質(zhì)疑,這是隨機(jī)強(qiáng)制推薦垃圾信息嗎?

其實(shí)不然,通過(guò)深度學(xué)習(xí),我們可以進(jìn)行大量的數(shù)據(jù)收集、數(shù)據(jù)分析和模型訓(xùn)練,我們是可以找到對(duì)某個(gè)個(gè)體無(wú)關(guān),但會(huì)讓其感興趣信息的興趣點(diǎn)。這種信息就是無(wú)關(guān)推薦的解。

最后

你每天接收到的“推薦”背后是各個(gè)團(tuán)隊(duì)經(jīng)過(guò)心理學(xué)研究、行為學(xué)研究、大量計(jì)算設(shè)計(jì)的,人們正在失去深度思考、自主判斷的能力。對(duì)于進(jìn)步青年、斜杠青年請(qǐng)保持思考。謹(jǐn)以此文獻(xiàn)給希望進(jìn)步的你,希望你有所收獲和思考。

作者微信公眾號(hào): caiyongji

免責(zé)聲明:本網(wǎng)站內(nèi)容主要來(lái)自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請(qǐng)進(jìn)一步核實(shí),并對(duì)任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對(duì)有關(guān)資料所引致的錯(cuò)誤、不確或遺漏,概不負(fù)任何法律責(zé)任。任何單位或個(gè)人認(rèn)為本網(wǎng)站中的網(wǎng)頁(yè)或鏈接內(nèi)容可能涉嫌侵犯其知識(shí)產(chǎn)權(quán)或存在不實(shí)內(nèi)容時(shí),應(yīng)及時(shí)向本網(wǎng)站提出書(shū)面權(quán)利通知或不實(shí)情況說(shuō)明,并提供身份證明、權(quán)屬證明及詳細(xì)侵權(quán)或不實(shí)情況證明。本網(wǎng)站在收到上述法律文件后,將會(huì)依法盡快聯(lián)系相關(guān)文章源頭核實(shí),溝通刪除相關(guān)內(nèi)容或斷開(kāi)相關(guān)鏈接。

2018-01-14
AI時(shí)代:推薦引擎正在塑造人類(lèi)
We shape our tools and afterwards our tools shape us ------Marshall McLuhan 麥克

長(zhǎng)按掃碼 閱讀全文