極客網(wǎng)·極客觀察(朱飛)10月25日 在風(fēng)云變幻的AI大模型時代,科大訊飛與華為的聯(lián)合拓展令人印象深刻。過去幾年來,雙方協(xié)同創(chuàng)新突破重重障礙,一次次證明國產(chǎn)算力基礎(chǔ)設(shè)施可以支撐國產(chǎn)AI大模型良性發(fā)展,在關(guān)鍵性能和體驗上不輸世界領(lǐng)先玩家,同時具備更佳的成本效益。
10月24日,以“萬物智聯(lián) 生生不息”為主題的科大訊飛全球1024開發(fā)者節(jié)隆重舉行。下午的央國企論壇上,科大訊飛與華為再度強強聯(lián)手,共同發(fā)布訊飛星火&華為數(shù)據(jù)存儲AI解決方案,將AI集群算力利用率提升30%,助力國產(chǎn)大模型創(chuàng)新突圍,在業(yè)內(nèi)樹立起“以存強算”的又一標(biāo)桿。
該AI存儲解決方案通過華為OceanStor A系列全新硬件、訊飛星火基礎(chǔ)大模型軟硬協(xié)同,深度優(yōu)化,可支持萬億參數(shù)大模型,大規(guī)模算力集群的訓(xùn)推任務(wù),實現(xiàn)訓(xùn)推全流程加速,助力大模型算力利用率大幅提升,為業(yè)界輸出了一份凝結(jié)雙方技術(shù)與經(jīng)驗的標(biāo)準(zhǔn)方案。
極致性能“以存強算”,AI集群算力利用率提升超30%
根據(jù)規(guī)模定律(Scaling Law),更強的算力加上更多的有效訓(xùn)練數(shù)據(jù),可以得到更好的AI大模型。這意味著,大模型的訓(xùn)練和推理不僅需要強大的算力支持,還需要高效的存儲系統(tǒng)來保證數(shù)據(jù)的快速讀寫和處理,存儲系統(tǒng)的性能直接影響到大模型的訓(xùn)練效率和效果?。
為了解決大模型訓(xùn)練中的存儲挑戰(zhàn),需要采用高性能的存儲方案。例如,使用高性能NAS存儲系統(tǒng)可以顯著提高數(shù)據(jù)讀寫速度,減少訓(xùn)練過程中的等待時間?。此外,優(yōu)化存儲架構(gòu)和采用更適合大模型訓(xùn)練的存儲解決方案,也可以提高訓(xùn)練效率?。
此番發(fā)布的訊飛星火&華為數(shù)據(jù)存儲AI解決方案,正采用了華為新一代OceanStor A系列AI存儲,通過創(chuàng)新數(shù)控分離架構(gòu),高性能并行客戶端,實現(xiàn)了百TB級帶寬,百億級IOPS,將訓(xùn)練集加載效率提升8倍,斷點續(xù)訓(xùn)速度提升4倍,最終使得AI集群算力的利用率提升了超過30%。
資料顯示,隨著大模型集群規(guī)模增長,集群的算力利用率并未同步提升,千卡以上大模型算力利用率不足50%。而科大訊飛聯(lián)合華為搭建的大規(guī)模AI集群,算力利用率常年保持在60%以上的高位,大幅領(lǐng)先于業(yè)內(nèi)水平,背后的支撐之一正是華為數(shù)據(jù)存儲提供的高性能存力底座。
超大規(guī)模調(diào)度,AI數(shù)據(jù)湖讓大模型數(shù)據(jù)全局可管可用
在追求存儲性能的同時,存儲容量也是大模型存力底座的關(guān)鍵。隨著AI技術(shù)快速發(fā)展,AI大模型從單模態(tài)發(fā)展到多模態(tài),短短數(shù)年時間大模型訓(xùn)練的數(shù)據(jù)量已呈現(xiàn)1000倍的增長,亟需為AI算力集群建設(shè)AI數(shù)據(jù)湖,規(guī)模擴(kuò)展并打破數(shù)據(jù)煙囪,實現(xiàn)全局流動可管可用。
大模型訓(xùn)練需要處理的數(shù)據(jù)通常以圖片、文檔等小文件的形式存在,傳統(tǒng)的存儲系統(tǒng)面對這些小文件存在加載速度慢的問題,影響訓(xùn)練效率?。企業(yè)擁抱大模型首當(dāng)其沖便是要對這些海量多源異構(gòu)數(shù)據(jù)進(jìn)行高效管理,做好數(shù)據(jù)歸集、預(yù)處理等準(zhǔn)備工作,才能保障大模型訓(xùn)練的效率及效果。
在這個維度,華為新一代OceanStor A系列AI存儲具備無損多協(xié)議互通、冷熱數(shù)據(jù)智能分級專業(yè)存儲能力,支持512控橫向大規(guī)模擴(kuò)展能力,支持EB級存儲空間;通過使用統(tǒng)一的AI數(shù)據(jù)湖存儲大模型數(shù)據(jù),可實現(xiàn)冷熱數(shù)據(jù)分級存儲,跨越數(shù)據(jù)孤島,打破數(shù)據(jù)界限,確保了模型內(nèi)數(shù)據(jù)的高效流動,為大模型訓(xùn)練做好充分的數(shù)據(jù)準(zhǔn)備。
伴隨著訊飛星火&華為數(shù)據(jù)存儲AI解決方案的發(fā)布,訊飛星火訓(xùn)推平臺的AI數(shù)據(jù)湖成功經(jīng)驗也浮出水面。據(jù)介紹,經(jīng)過多輪技術(shù)迭代演進(jìn),訊飛建設(shè)AI數(shù)據(jù)湖底座,有效支撐了十萬億參數(shù)級別的通用多模態(tài)大模型訓(xùn)練,并大幅提升了集群算力利用率。
技術(shù)與經(jīng)驗深度耦合,構(gòu)建AI Ready的數(shù)據(jù)基礎(chǔ)設(shè)施
值得注意的是,此次發(fā)布的訊飛星火&華為數(shù)據(jù)存儲AI解決方案并非雙方的“即興之作”,此前雙方便在存算分離、統(tǒng)一存儲平臺等方面展開了合作。隨著大模型持續(xù)演進(jìn),兩家又于去年7月正式啟動AI存力底座的聯(lián)合創(chuàng)新項目,旨在共同打造面向AI大模型場景的最佳數(shù)據(jù)存儲解決方案。
實際上,在驅(qū)動AI發(fā)展的三駕馬車中,隨著算力逐漸趨同、算法加速收斂,蓬勃發(fā)展的數(shù)據(jù)成了影響大模型效果的核心要素。業(yè)界也逐漸意識到,數(shù)據(jù)規(guī)模和質(zhì)量決定AI智能的高度,為了提升從數(shù)據(jù)獲取、數(shù)據(jù)預(yù)處理、模型訓(xùn)練、推理應(yīng)用的AI全流程效率,消除數(shù)據(jù)孤島帶來的海量數(shù)據(jù)搬遷,一個高性能、穩(wěn)定可靠的統(tǒng)一存力底座是必不可少的基石。
為此,科大訊飛在依托全國產(chǎn)化算力平臺打造訊飛星火認(rèn)知基礎(chǔ)大模型時,也基于大模型數(shù)據(jù)和訓(xùn)練閉環(huán)全流程設(shè)計、訓(xùn)練和推理一體化設(shè)計的思路,自研超大規(guī)模大模型訓(xùn)練平臺,迭代升級自家的大模型,先行先試趟出了一條探索Storage for AI、構(gòu)建AI Ready的數(shù)據(jù)基礎(chǔ)設(shè)施的“訊飛之道”。
資料顯示,在訊飛大模型訓(xùn)練平臺的加持下,訊飛星火大模型歷經(jīng)數(shù)個版本的升級,目前已在文本生成、語言理解、知識問答、邏輯推理、數(shù)學(xué)能力、代碼能力、多模交互7大核心能力維度實現(xiàn)全國領(lǐng)先,通過中國信通院AIGC大模型基礎(chǔ)能力評測并獲得4+級的高評分,部分能力更是全面超過OpenAI的最新模型GPT-4 Turbo。
實踐出真知,相信這種源自訊飛星火與華為數(shù)據(jù)存儲雙方的技術(shù)與經(jīng)驗,深度耦合而“孵化”出來的AI存儲解決方案,必將能夠加速AI Ready的數(shù)據(jù)基礎(chǔ)設(shè)施建設(shè),為客戶帶來高性能、高擴(kuò)展和更智能的AI訓(xùn)推體驗,推動AI產(chǎn)業(yè)發(fā)展,將AI大模型的算力真正轉(zhuǎn)化為企業(yè)組織的新質(zhì)生產(chǎn)力!
- 蜜度索驥:以跨模態(tài)檢索技術(shù)助力“企宣”向上生長
- 英特爾CEO黯然退場背后:芯片制造陷泥潭,AI起大早趕晚集
- 開源5年樹立新里程 openEuler以智能 致世界
- 華為推出Mate 70手機(jī)引發(fā)高度關(guān)注 看外媒是如何評價的?
- 5G-A終端規(guī)模鋪開響應(yīng)“以舊換新”,湖北移動“機(jī)網(wǎng)套”協(xié)同刺激內(nèi)需
- 六載華為開發(fā)者大賽,“賽”出云上開發(fā)新生態(tài)
- iPhone在華份額為何不斷下滑?外媒分析:因無法提供AI服務(wù)
- 硬科技觀察之智能體:2025年會是AI智能體爆發(fā)之年
- "以智賦網(wǎng)"關(guān)鍵一躍!華為首發(fā)Ambient Site構(gòu)建無線智能化底座
- 硬科技產(chǎn)業(yè)觀察之端側(cè)AI:AI算力隨身釋放千億價值
- “智網(wǎng)慧城”計劃啟動全球招募,以智賦網(wǎng)成MBBF 2024焦點
免責(zé)聲明:本網(wǎng)站內(nèi)容主要來自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請進(jìn)一步核實,并對任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對有關(guān)資料所引致的錯誤、不確或遺漏,概不負(fù)任何法律責(zé)任。任何單位或個人認(rèn)為本網(wǎng)站中的網(wǎng)頁或鏈接內(nèi)容可能涉嫌侵犯其知識產(chǎn)權(quán)或存在不實內(nèi)容時,應(yīng)及時向本網(wǎng)站提出書面權(quán)利通知或不實情況說明,并提供身份證明、權(quán)屬證明及詳細(xì)侵權(quán)或不實情況證明。本網(wǎng)站在收到上述法律文件后,將會依法盡快聯(lián)系相關(guān)文章源頭核實,溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。