AI 芯片設(shè)計(jì)是人工智能產(chǎn)業(yè)鏈的重要一環(huán)。 自 2017 年 5 月以來(lái),各 AI 芯片廠商的新品競(jìng)相發(fā)布,經(jīng)過(guò)一年多的發(fā)展,各環(huán)節(jié)分工逐漸明顯。 AI 芯片的應(yīng)用場(chǎng)景不再局限于云端,部署于智能手機(jī)、 安防攝像頭、及自動(dòng)駕駛汽車等終端的各項(xiàng)產(chǎn)品日趨豐富。 除了追求性能提升外, AI 芯片也逐漸專注于特殊場(chǎng)景的優(yōu)化。
自 2017 年 5 月以來(lái)發(fā)布的 AI 芯片一覽
目前, 人工智能產(chǎn)業(yè)鏈中,包括提供 AI 加速核的 IP 授權(quán)商,各種 AI 芯片設(shè)計(jì)公司,以及晶圓代工企業(yè)。
按部署的位置來(lái)分, AI 芯片可以部署在數(shù)據(jù)中心(云端),和手機(jī),安防攝像頭,汽車等終端上。
按承擔(dān)的任務(wù)來(lái)分,可以被分為用于構(gòu)建神經(jīng)網(wǎng)絡(luò)模型的訓(xùn)練芯片,與利用神經(jīng)網(wǎng)絡(luò)模型進(jìn)行推斷的推斷芯片。 訓(xùn)練芯片注重絕對(duì)的計(jì)算能力,而推斷芯片更注重綜合指標(biāo), 單位能耗算力、時(shí)延、成本等都要考慮。
訓(xùn)練芯片受算力約束,一般只在云端部署。推斷芯片按照不同應(yīng)用場(chǎng)景,分為手機(jī)邊緣推斷芯片、安防邊緣推斷芯片、自動(dòng)駕駛邊緣推斷芯片。為方便起見(jiàn),我們也稱它們?yōu)槭謾C(jī) AI 芯片、安防 AI 芯片和汽車 AI 芯片。
由于 AI芯片對(duì)單位能耗算力要求較高,一般采用 14nm/12nm/10nm等先進(jìn)工藝生產(chǎn)。臺(tái)積電目前和 Nvidia、 Xilinx 等多家芯片廠商展開合作,攻堅(jiān) 7nm AI 芯片。
AI 芯片投資地圖
AI 芯片市場(chǎng)規(guī)模: 未來(lái)五年有接近 10 倍的增長(zhǎng), 2022 年將達(dá)到 352 億美元。根據(jù)我們對(duì)相關(guān)上市 AI 芯片公司的收入統(tǒng)計(jì),及對(duì) AI 在各場(chǎng)景中滲透率的估算, 2017年 AI 芯片市場(chǎng)規(guī)模已達(dá)到 39.1 億美元,具體情況如下:
2017 年全球數(shù)據(jù)中心 AI 芯片規(guī)模合計(jì) 23.6 億美元,其中云端訓(xùn)練芯片市場(chǎng)規(guī)模 20.2億美元,云端推斷芯片 3.4 億美元。
2017 年全球手機(jī) AI 芯片市場(chǎng)規(guī)模 3.7 億美元。
2017 年全球安防攝像頭 AI 芯片市場(chǎng)規(guī)模 3.3 億美元。
2017 年全球自動(dòng)駕駛 AI 芯片的市場(chǎng)規(guī)模在 8.5 億美元。
AI 芯片市場(chǎng)規(guī)模及競(jìng)爭(zhēng)格局
Nvidia 在 2017 年時(shí)指出,到 2020 年,全球云端訓(xùn)練芯片的市場(chǎng)規(guī)模將達(dá)到 110 億美元,而推斷芯片(云端+邊緣) 的市場(chǎng)規(guī)模將達(dá)到 150 億美元。 Intel 在剛剛結(jié)束的 2018 DCI峰會(huì)上,也重申了數(shù)據(jù)業(yè)務(wù)驅(qū)動(dòng)硬件市場(chǎng)增長(zhǎng)的觀點(diǎn)。 Intel 將 2022 年與用于數(shù)據(jù)中心執(zhí)行 AI 加速的 FPGA 的 TAM 預(yù)測(cè),由 70 億美元調(diào)高至 80 億美元。
而同時(shí)我們也注意到:
1)手機(jī) SoC 價(jià)格不斷上升、 AI 向中端機(jī)型滲透都將為行業(yè)創(chuàng)造更廣闊的市場(chǎng)空間。
歷代 Apple 手機(jī)芯片成本趨勢(shì)
2)安防芯片受益于現(xiàn)有設(shè)備的智能化升級(jí),芯片需求擴(kuò)大。
自動(dòng)駕駛算力需求加速芯片升級(jí)
3)自動(dòng)駕駛方面,針對(duì)豐田公司提出的算力需求,我們看到當(dāng)下芯片算力與 L5 級(jí)自動(dòng)駕駛還有較大差距。 英飛凌公司給出了各自動(dòng)駕駛等級(jí)中的半導(dǎo)體價(jià)值預(yù)測(cè), 可以為我們的 TAM 估算提供參考。
英飛凌對(duì)各自動(dòng)駕駛等級(jí)中半導(dǎo)體價(jià)值的預(yù)測(cè)
結(jié)合以上觀點(diǎn),及我們對(duì) AI 在各應(yīng)用場(chǎng)景下滲透率的分析,我們預(yù)測(cè):
云端訓(xùn)練芯片市場(chǎng)規(guī)模在 2022 年將達(dá)到 172 億美元, CAGR~54%。
云端推斷芯片市場(chǎng)規(guī)模在 2022 年將達(dá)到 72 億美元, CAGR~84%。
用于智能手機(jī)的邊緣推斷芯片市場(chǎng)規(guī)模 2022 年將達(dá)到 38 億美元, CAGR~59%。
用于安防攝像頭的邊緣推斷芯片市場(chǎng)規(guī)模 2022 年將達(dá)到 18 億美元, CAGR~41%。
用于自動(dòng)駕駛汽車的邊緣推斷芯片市場(chǎng)規(guī)模 2022 年將達(dá)到 52 億美元, CAGR~44%。
云端訓(xùn)練芯片: TPU 很難撼動(dòng) Nvidia GPU 的壟斷地位
訓(xùn)練是指通過(guò)大量的數(shù)據(jù)樣本,代入神經(jīng)網(wǎng)絡(luò)模型運(yùn)算并反復(fù)迭代,來(lái)獲得各神經(jīng)元“正確”權(quán)重參數(shù)的過(guò)程。 CPU 由于計(jì)算單元少,并行計(jì)算能力較弱,不適合直接執(zhí)行訓(xùn)練任務(wù),因此訓(xùn)練一般采用“CPU+加速芯片”的異構(gòu)計(jì)算模式。目前 Nvidia 的 GPU+CUDA計(jì)算平臺(tái)是最成熟的 AI 訓(xùn)練方案,除此還有:
AI 芯片工作流程
第三方異構(gòu)計(jì)算平臺(tái) OpenCL + AMD GPU 或 OpenCL+I(xiàn)ntel/Xilinx 的 FPGA。
云計(jì)算服務(wù)商自研加速芯片(如 Google 的 TPU) 這兩種方案。各芯片廠商基于不同方案,都推出了針對(duì)于云端訓(xùn)練的 AI 芯片。
云端訓(xùn)練芯片對(duì)比
在 GPU 之外,云端訓(xùn)練的新入競(jìng)爭(zhēng)者是 TPU。 Google 在去年正式發(fā)布了其 TPU 芯片,并在二代產(chǎn)品中開始提供對(duì)訓(xùn)練的支持,但比較下來(lái), GPU 仍然擁有最強(qiáng)大的帶寬(900GB/s,保證數(shù)據(jù)吞吐量)和極高的深度學(xué)習(xí)計(jì)算能力(120 TFLOPS vs. TPUv2 45 TFLOPS),在功耗上也并沒(méi)有太大劣勢(shì)(TPU 進(jìn)行訓(xùn)練時(shí),引入浮點(diǎn)數(shù)計(jì)算,需要逾 200W 的功耗,遠(yuǎn)不及推斷操作節(jié)能)。目前 TPU 只提供按時(shí)長(zhǎng)付費(fèi)使用的方式,并不對(duì)外直接銷售,市占率暫時(shí)也難以和 Nvidia GPU 匹敵。
Intel
雖然深度學(xué)習(xí)任務(wù)主要由 GPU 承擔(dān),但 CPU 目前仍是云計(jì)算芯片的主體。 Intel 于 2015年底年收購(gòu)全球第二大 FPGA 廠商 Altera 以后,也積極布局 CPU+FPGA 異構(gòu)計(jì)算助力 AI,并持續(xù)優(yōu)化 Xeon CPU 結(jié)構(gòu)。 2017 年 Intel 發(fā)布了用于 Xeon 服務(wù)器的,新一代標(biāo)準(zhǔn)化的加速卡,使用戶可以 AI 領(lǐng)域進(jìn)行定制計(jì)算加速。得益于龐大的云計(jì)算市場(chǎng)支撐, Intel 數(shù)據(jù)中心組業(yè)務(wù)收入規(guī)模一直位于全球首位, 2016-17 年單季保持同比中高個(gè)位數(shù)增長(zhǎng)。 2017年 4 季度起,收入同比增速開始爬坡至 20%左右,但相比 Nvidia 的強(qiáng)勁增長(zhǎng)態(tài)勢(shì)仍有差距。
AMD
AMD 雖未單獨(dú)拆分?jǐn)?shù)據(jù)中心收入,但從其計(jì)算和圖像業(yè)務(wù)的收入增長(zhǎng)情況來(lái)看, GPU 銷量向好。目前 AMD GPU 也開始切入深度學(xué)習(xí)訓(xùn)練任務(wù),但市場(chǎng)規(guī)模落后于 Nvidia。
123下一頁(yè)>(免責(zé)聲明:本網(wǎng)站內(nèi)容主要來(lái)自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請(qǐng)進(jìn)一步核實(shí),并對(duì)任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對(duì)有關(guān)資料所引致的錯(cuò)誤、不確或遺漏,概不負(fù)任何法律責(zé)任。
任何單位或個(gè)人認(rèn)為本網(wǎng)站中的網(wǎng)頁(yè)或鏈接內(nèi)容可能涉嫌侵犯其知識(shí)產(chǎn)權(quán)或存在不實(shí)內(nèi)容時(shí),應(yīng)及時(shí)向本網(wǎng)站提出書面權(quán)利通知或不實(shí)情況說(shuō)明,并提供身份證明、權(quán)屬證明及詳細(xì)侵權(quán)或不實(shí)情況證明。本網(wǎng)站在收到上述法律文件后,將會(huì)依法盡快聯(lián)系相關(guān)文章源頭核實(shí),溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。 )