作者:camel
不管是AI也好,其他學(xué)科也好,學(xué)習(xí)、研究的過程中不斷反思學(xué)科的歷史,總結(jié)學(xué)科的發(fā)展現(xiàn)狀,找出最重要的理念,總能讓人能“吾道一以貫之”。軟件工程師James Le近期根據(jù)他研究的經(jīng)驗(yàn)總結(jié)出了AI研究必須要知道的十種深度學(xué)習(xí)方法,非常具有啟發(fā)性。
The 10 Deep Learning Methods AI Practitioners Need to?Apply
人們對(duì)機(jī)器學(xué)習(xí)的興趣在過去十年經(jīng)歷了爆炸式的發(fā)展。計(jì)算機(jī)科學(xué)項(xiàng)目中、業(yè)界會(huì)議中、媒體報(bào)道中,你都能夠看到機(jī)器學(xué)習(xí)的影子。但是似乎所有關(guān)于機(jī)器學(xué)習(xí)的討論中,人們常常會(huì)把AI能做什么和他們希望AI能做什么混為一談。
從根本上來(lái)講,機(jī)器學(xué)習(xí)其實(shí)就是使用算法從原始數(shù)據(jù)中提取信息,并以某種類型的模型表示出來(lái);然后我們使用這個(gè)模型來(lái)推斷我們尚未建模的其他數(shù)據(jù)。
神經(jīng)網(wǎng)絡(luò)作為機(jī)器學(xué)習(xí)的一類模型,它們已經(jīng)存在了至少50年。神經(jīng)網(wǎng)絡(luò)的基本單元是節(jié)點(diǎn),大致上模仿了哺乳動(dòng)物大腦中的生物神經(jīng)元的節(jié)點(diǎn);節(jié)點(diǎn)之間的鏈接(也是模仿生物大腦)隨著時(shí)間的推移(訓(xùn)練)而演化。
在上世紀(jì)八十年代中期和九十年代早期,許多重要的神經(jīng)網(wǎng)絡(luò)構(gòu)架都已經(jīng)做出了,不過要想獲得好的結(jié)果還需要足夠強(qiáng)大的計(jì)算能力和大體量的數(shù)據(jù)集,這些當(dāng)時(shí)在當(dāng)時(shí)很不理想,所以也導(dǎo)致人們對(duì)機(jī)器學(xué)習(xí)的熱情逐漸冷淡了下來(lái)。在21世紀(jì)初,計(jì)算機(jī)的計(jì)算能力呈現(xiàn)了指數(shù)級(jí)的增長(zhǎng)——業(yè)界見證了計(jì)算機(jī)技術(shù)的“寒武紀(jì)大爆發(fā)”,這在之前幾乎是不可想象的。深度學(xué)習(xí)作為這個(gè)領(lǐng)域中一個(gè)重要的架構(gòu),在計(jì)算能力爆發(fā)式增長(zhǎng)的十年中,贏得了許多重要的機(jī)器學(xué)習(xí)競(jìng)賽。這個(gè)紅利的熱度直到今年仍未降溫;今天,我們看到在機(jī)器學(xué)習(xí)的每個(gè)角落里都會(huì)提到深度學(xué)習(xí)。
為了更深入地了解這些,我參加了一門“深度學(xué)習(xí)”課程,并開發(fā)了一個(gè)圖像識(shí)別的神經(jīng)網(wǎng)絡(luò)以及基于循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長(zhǎng)短項(xiàng)記憶(LSTM)的自然語(yǔ)言處理??梢匀ノ业腉ithub倉(cāng)庫(kù)中查看這些代碼:
https://github.com/khanhnamle1994/deep-learning
最近,我也開始閱讀一些深度學(xué)習(xí)方面的學(xué)術(shù)論文。下面這些是我收集到的幾篇對(duì)深度學(xué)習(xí)領(lǐng)域的發(fā)展有重大影響的幾篇論文:
1、Gradient-Based Learning Applied to Document Recognition (1998)
意義:向機(jī)器學(xué)習(xí)世界引進(jìn)了卷積神經(jīng)網(wǎng)絡(luò)
作者:Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner
2、Deep Boltzmann Machines (2009)
意義:為玻爾茲曼機(jī)提出了一種新的學(xué)習(xí)算法,其中包含許多隱藏變量層。
作者:Ruslan Salakhutdinov, Geoffrey Hinton
3、Building High-Level Features Using Large-Scale Unsupervised Learning (2012)
意義:解決了僅從未標(biāo)記的數(shù)據(jù)構(gòu)建高層次、特定類別的特征檢測(cè)器的問題。
作者:Quoc V. Le,Marc’Aurelio Ranzato,Rajat Monga,Matthieu Devin,Kai Chen,Greg S. Corrado,Jeff Dean,Andrew Y. Ng
4、DeCAF?—?A Deep Convolutional Activation Feature for Generic Visual Recognition (2013)
意義:釋放了一個(gè)深度卷積激活特征的開源實(shí)現(xiàn)——DeCAF,以及所有相關(guān)的網(wǎng)絡(luò)參數(shù),使視覺研究人員能夠深入地在一系列視覺概念學(xué)習(xí)范例中進(jìn)行實(shí)驗(yàn)。
作者:Jeff Donahue,Yangqing Jia,Oriol Vinyals,Judy Hoffman,Ning Zhang,Eric Tzeng,Trevor Darrell
5、Playing Atari with Deep Reinforcement Learning (2016)
意義:提供了第一個(gè)可以使用強(qiáng)化學(xué)習(xí)從高維感官輸入中直接學(xué)習(xí)控制策略的深度學(xué)習(xí)模型。
作者:Volodymyr Mnih,Koray Kavukcuoglu,David Silver,Alex Graves,Ioannis Antonoglou,Daan Wierstra,Martin Riedmiller(DeepMind 團(tuán)隊(duì))
在這些學(xué)習(xí)和研究中,我發(fā)現(xiàn)大量非常有意思的知識(shí)點(diǎn)。在這里我將分享十個(gè)深度學(xué)習(xí)的方法,AI工程師可能會(huì)將這些應(yīng)用到他們的機(jī)器學(xué)習(xí)問題當(dāng)中。
不過,首先先讓我們來(lái)定義一下什么是“深度學(xué)習(xí)”。對(duì)很多人來(lái)說(shuō),給“深度學(xué)習(xí)”下一個(gè)定義確實(shí)很有挑戰(zhàn),因?yàn)樵谶^去的十年中,它的形式已經(jīng)慢慢地發(fā)生了很大的變化。
先來(lái)在視覺上感受一下“深度學(xué)習(xí)”的地位。下圖是AI、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)三個(gè)概念的一個(gè)關(guān)系圖。
AI的領(lǐng)域要相對(duì)較廣泛,機(jī)器學(xué)習(xí)是AI的一個(gè)子領(lǐng)域,而深度學(xué)習(xí)是機(jī)器學(xué)習(xí)領(lǐng)域中的一個(gè)子集。
深度學(xué)習(xí)網(wǎng)絡(luò)與“典型”的前饋多層網(wǎng)絡(luò)之間是有一些區(qū)別的,如下:
深度學(xué)習(xí)網(wǎng)絡(luò)比之前的網(wǎng)絡(luò)有更多的神經(jīng)元深度學(xué)習(xí)網(wǎng)絡(luò)具有更復(fù)雜的連接層的方式深度學(xué)習(xí)網(wǎng)絡(luò)需要用強(qiáng)大的計(jì)算能力來(lái)訓(xùn)練深度學(xué)習(xí)網(wǎng)絡(luò)能夠進(jìn)行自動(dòng)特征提取因此深度學(xué)習(xí)可以被定義為在以下四個(gè)基本網(wǎng)絡(luò)框架中擁有大量參數(shù)和層的神經(jīng)網(wǎng)絡(luò):
無(wú)監(jiān)督預(yù)訓(xùn)練網(wǎng)絡(luò)(Unsupervised Pre-trained Networks)卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks)循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks)遞歸神經(jīng)網(wǎng)絡(luò) (Recursive Neural Networks)在這篇文章中,我主要對(duì)后三個(gè)框架比較感興趣。
卷積神經(jīng)網(wǎng)絡(luò)?基本上就是用共享權(quán)重在空間中進(jìn)行擴(kuò)展的標(biāo)準(zhǔn)神經(jīng)網(wǎng)絡(luò)。設(shè)計(jì)CNN主要是為了通過內(nèi)部卷積來(lái)識(shí)別圖片,內(nèi)部卷積可以看到待識(shí)別物體的邊。
循環(huán)神經(jīng)網(wǎng)絡(luò)?基本上是在時(shí)間上進(jìn)行擴(kuò)展的標(biāo)準(zhǔn)神經(jīng)網(wǎng)絡(luò),因?yàn)檫呥M(jìn)入下一個(gè)時(shí)間步,而不是在同一時(shí)間步進(jìn)入下一個(gè)層。設(shè)計(jì)RNN主要是為了識(shí)別序列,例如語(yǔ)音信號(hào)或者文本。它里面的循環(huán)意味著網(wǎng)絡(luò)中存在短暫的記憶。
遞歸神經(jīng)網(wǎng)絡(luò)?更類似于分層網(wǎng)絡(luò),其中輸入序列沒有真正的時(shí)間面,而是輸入必須以樹狀方式分層處理。
以下10種方法可以應(yīng)用于所有這些體系結(jié)構(gòu)。
1、反向傳播
反向傳播是“誤差反向傳播”的簡(jiǎn)稱,它是一種計(jì)算函數(shù)(在神經(jīng)網(wǎng)絡(luò)中以函數(shù)形式存在)偏微分的方法。當(dāng)你要用一個(gè)基于梯度的方法來(lái)解決一個(gè)最優(yōu)問題時(shí)(注意梯度下降只是解決這類問題的一種方法),你希望在每一次迭代中計(jì)算函數(shù)梯度。
對(duì)于神經(jīng)網(wǎng)絡(luò)而言,目標(biāo)函數(shù)具有合成的形式。那么如何計(jì)算梯度呢?一般情況下有兩種常見的方法:
微分分析法。當(dāng)你知道這個(gè)函數(shù)的形式時(shí),你只需要用鏈?zhǔn)椒▌t計(jì)算導(dǎo)數(shù)即可;用有限差分方法來(lái)近似微分。這種方法的計(jì)算量很大,因?yàn)楹瘮?shù)評(píng)估的數(shù)量是O(N),其中N是參數(shù)的數(shù)量。與微分分析法相比,這是比較昂貴的。不過,有限差分通常在調(diào)試時(shí)驗(yàn)證后端實(shí)現(xiàn)。2、隨機(jī)梯度下降
一個(gè)直觀理解梯度下降的方法是去想象一條溯源山頂?shù)暮恿?。這條河流會(huì)沿著山勢(shì)梯度的方向流向山麓下的最低點(diǎn)。
如果讓人來(lái)走,可能就不一樣了,你可能會(huì)先隨便選一個(gè)方向,然后沿著這個(gè)方向的梯度向下走;過一會(huì)兒再隨機(jī)換一個(gè)方向向下走;最后你發(fā)現(xiàn)自己差不多也到了谷底了。
數(shù)學(xué)化的理解就是:
隨機(jī)梯度下降主要用來(lái)求解類似于如下求和形式的優(yōu)化問題:
梯度下降法:
當(dāng)n很大時(shí),每次迭代計(jì)算所有的梯度會(huì)非常耗時(shí)。
隨機(jī)梯度下降的想法就是每次在Delta f_i 中隨機(jī)選取一個(gè)計(jì)算代替上面的Delta f_i,以這個(gè)隨機(jī)選取的方向作為下降的方向。這樣的方法反而比梯度下降能夠更快地到達(dá)(局部)最優(yōu)解。
3、學(xué)習(xí)率衰減
在訓(xùn)練模型的時(shí)候,通常會(huì)遇到這種情況:我們平衡模型的訓(xùn)練速度和損失(loss)后選擇了相對(duì)合適的學(xué)習(xí)率(learning rate),但是訓(xùn)練集的損失下降到一定的程度后就不在下降了,比如training loss一直在0.7和0.9之間來(lái)回震蕩,不能進(jìn)一步下降。如下圖所示:
遇到這種情況通??梢酝ㄟ^適當(dāng)降低學(xué)習(xí)率(learning rate)來(lái)實(shí)現(xiàn)。但是,降低學(xué)習(xí)率又會(huì)延長(zhǎng)訓(xùn)練所需的時(shí)間。
學(xué)習(xí)率衰減(learning rate decay)就是一種可以平衡這兩者之間矛盾的解決方案。學(xué)習(xí)率衰減的基本思想是:學(xué)習(xí)率隨著訓(xùn)練的進(jìn)行逐漸衰減。
學(xué)習(xí)率衰減基本有兩種實(shí)現(xiàn)方法:
線性衰減。例如:每過5個(gè)epochs學(xué)習(xí)率減半;指數(shù)衰減。例如:每過5個(gè)epochs將學(xué)習(xí)率乘以0.1。4、dropout
在當(dāng)前的大規(guī)模神經(jīng)網(wǎng)絡(luò)中有兩個(gè)缺點(diǎn):
費(fèi)時(shí);容易過擬合Dropout 可以很好地解決這個(gè)問題。Dropout說(shuō)的簡(jiǎn)單一點(diǎn)就是在前向傳導(dǎo)的時(shí)候,讓某個(gè)神經(jīng)元的激活值以一定的概率p停止工作,示意圖如下:
每次做完dropout,相當(dāng)于從原始的網(wǎng)絡(luò)中找到一個(gè)更瘦的網(wǎng)絡(luò)。
Hinton在其論文中做了這樣的類比,無(wú)性繁殖可以保留大段的優(yōu)秀基因,而有性繁殖則將基因隨機(jī)拆了又拆,破壞了大段基因的聯(lián)合適應(yīng)性;但是自然選擇了有性繁殖,物競(jìng)天擇,適者生存,可見有性繁殖的強(qiáng)大。dropout 也能達(dá)到同樣的效果,它強(qiáng)迫一個(gè)神經(jīng)單元,和隨機(jī)挑選出來(lái)的其他神經(jīng)單元共同工作,消除減弱了神經(jīng)元節(jié)點(diǎn)間的聯(lián)合適應(yīng)性,增強(qiáng)了泛化能力。
5、max pooling
池化(Pooling)是卷積神經(jīng)網(wǎng)絡(luò)中另一個(gè)重要的概念,它實(shí)際上是一種形式的向下采樣。有多種不同形式的非線性池化函數(shù),而其中“最大池化(Max pooling)”是最為常見的。它是將輸入的圖像劃分為若干個(gè)矩形區(qū)域,對(duì)每個(gè)子區(qū)域輸出最大值。
直覺上,這種機(jī)制能夠有效地原因在于,在發(fā)現(xiàn)一個(gè)特征之后,它的精確位置遠(yuǎn)不及它和其他特征的相對(duì)位置的關(guān)系重要。池化層會(huì)不斷地減小數(shù)據(jù)的空間大小,因此參數(shù)的數(shù)量和計(jì)算量也會(huì)下降,這在一定程度上也控制了過擬合。通常來(lái)說(shuō),CNN的卷積層之間都會(huì)周期性地插入池化層。
6、批標(biāo)準(zhǔn)化
包括深度網(wǎng)絡(luò)在內(nèi)的神經(jīng)網(wǎng)絡(luò)需要仔細(xì)調(diào)整權(quán)重初始化和學(xué)習(xí)參數(shù)。批標(biāo)準(zhǔn)化使這些變得輕松許多。
權(quán)重問題:
無(wú)論權(quán)重的初始化如何,是隨機(jī)的還是經(jīng)驗(yàn)性的選擇,它們離學(xué)習(xí)權(quán)重都會(huì)很遠(yuǎn)。考慮一個(gè)小批量,初期在所需的特征激活方面會(huì)有很多異常值。深層神經(jīng)網(wǎng)絡(luò)本身是病態(tài)的,初始層中的微小擾動(dòng)都會(huì)導(dǎo)致后面層的非常大的變化。在反向傳播過程中,這些現(xiàn)象會(huì)導(dǎo)致梯度彌散。這就意味著在學(xué)習(xí)權(quán)重產(chǎn)生所需要的輸出前,必須對(duì)梯度的異常值進(jìn)行補(bǔ)償,這將導(dǎo)致需要額外的時(shí)段來(lái)收斂。
批量歸一化使這些梯度從分散到正常值并在小批量范圍內(nèi)流向共同目標(biāo)(通過歸一化)。
學(xué)習(xí)率問題:一般來(lái)說(shuō),學(xué)習(xí)率需要保持較低的值,使得只有一小部分的梯度來(lái)校正權(quán)重,原因是要使異常激活的梯度不影響已學(xué)習(xí)到的激活。通過批量標(biāo)準(zhǔn)化,可以減少這些異常激活,因此也就可以使用更高的學(xué)習(xí)率來(lái)加速學(xué)習(xí)過程。
7、long short-term memory
LSTM網(wǎng)絡(luò)具有以下三個(gè)方面,使其與循環(huán)神經(jīng)網(wǎng)絡(luò)中的常見神經(jīng)元不同:
它能夠決定何時(shí)讓輸入進(jìn)入神經(jīng)元;它能夠決定何時(shí)記住上一個(gè)時(shí)間步中計(jì)算的內(nèi)容;它決定何時(shí)讓輸出傳遞到下一個(gè)時(shí)間步。LSTM的美妙之處在于它能夠根據(jù)當(dāng)前的輸入本身來(lái)決定所有這些。 所以你看下面的圖表:
當(dāng)前時(shí)間的輸入信號(hào)x(t)決定所有上述3個(gè)點(diǎn)。 輸入門決定點(diǎn)1,遺忘門決定點(diǎn)2,輸出門決定點(diǎn)3。任何一條輸入都能夠采取所有這三個(gè)決定。這種設(shè)計(jì)其實(shí)是受到了我們大腦如何工作的啟發(fā),并且可以基于輸入來(lái)處理突然的上下文切換。
8、skip-gram
詞嵌入模型的目標(biāo)是為每個(gè)詞項(xiàng)學(xué)習(xí)一個(gè)高維密集表示,其中嵌入向量之間的相似性顯示了相應(yīng)詞之間的語(yǔ)義或句法相似性。 Skip-gram是一個(gè)學(xué)習(xí)詞嵌入算法的模型。
skip-gram模型(以及許多其他的詞語(yǔ)嵌入模型)背后的主要思想如下:兩個(gè)詞項(xiàng)相似,如果它們共享相似的上下文。
換句話說(shuō),假設(shè)你有一個(gè)句子,例如“貓是哺乳動(dòng)物”;如果你用“狗”而不是“貓”,這個(gè)句子還是一個(gè)有意義的句子。因此在這個(gè)例子中,“狗”和“貓”可以共享相同的上下文(即“是哺乳動(dòng)物”)。
基于上述假設(shè),你可以考慮一個(gè)上下文窗口(一個(gè)包含k個(gè)連續(xù)項(xiàng)的窗口),然后你跳過其中一個(gè)單詞,試著去學(xué)習(xí)一個(gè)能夠得到除跳過項(xiàng)外的所有項(xiàng)的神經(jīng)網(wǎng)絡(luò),并預(yù)測(cè)跳過的這個(gè)項(xiàng)。如果兩個(gè)詞在一個(gè)大語(yǔ)料庫(kù)中反復(fù)共享相似的語(yǔ)境,則這些詞的嵌入向量將具有相近的向量。
9、連續(xù)詞袋
在自然語(yǔ)言處理問題中,我們希望學(xué)習(xí)將文檔中的每個(gè)單詞表示為一個(gè)數(shù)字的向量,使得出現(xiàn)在相似的上下文中的單詞具有彼此接近的向量。在連續(xù)的單詞模型中,目標(biāo)是能夠使用圍繞特定單詞的上下文并預(yù)測(cè)特定單詞。
我們通過在一個(gè)大的語(yǔ)料庫(kù)中采取大量的句子來(lái)做到這一點(diǎn),每當(dāng)我們看到一個(gè)單詞時(shí),我們就提取周圍的單詞。 然后,我們將上下文單詞輸入到一個(gè)神經(jīng)網(wǎng)絡(luò),并預(yù)測(cè)在這個(gè)上下文中間的單詞。
當(dāng)我們有成千上萬(wàn)個(gè)這樣的上下文單詞和中間詞時(shí),我們就有一個(gè)神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)集的實(shí)例。 我們訓(xùn)練神經(jīng)網(wǎng)絡(luò),最后編碼的隱藏層輸出表示了特定單詞的嵌入。 恰巧,當(dāng)我們對(duì)大量的句子進(jìn)行訓(xùn)練時(shí),類似語(yǔ)境中的單詞得到相似的向量。
10、遷移學(xué)習(xí)
讓我們想一下如何在CNN中處理一張圖片。假設(shè)有一張圖片,你對(duì)它進(jìn)行卷積處理,然后你得到的輸出是像素的組合,我們姑且稱之為“邊”吧。我們?cè)俅问褂镁矸e,這時(shí)候你得到的輸出將是邊的組合,我們稱之為“線”。如果再次使用卷積,那么你將得到線的組合,等等。
每一層都是在尋找相應(yīng)的特定模式。你的神經(jīng)網(wǎng)絡(luò)最后一層一般會(huì)給出非常特定的模式。也許你在處理ImageNet,你的網(wǎng)絡(luò)最后一層可能是在找孩子、狗或飛機(jī)或別的任何東西。如果你向前兩層看,網(wǎng)絡(luò)可能是在找眼睛、耳朵、嘴巴或者輪子。
深度卷積神經(jīng)網(wǎng)絡(luò)中的每一層的深入都是在構(gòu)建越來(lái)越高層次的特征表示。最后兩層會(huì)產(chǎn)生你輸入模型的數(shù)據(jù)中的特定模式。換句話說(shuō),早期的層提取的特征則廣泛得多,在提取的大量的類中有很多簡(jiǎn)單的模式。
遷移學(xué)習(xí)就是當(dāng)你用一個(gè)數(shù)據(jù)集訓(xùn)練CNN時(shí),砍掉最后的一(些)層,再用另一個(gè)不同的數(shù)據(jù)集重新訓(xùn)練最后一(些)層的模型。直觀地說(shuō),你在重新訓(xùn)練模型來(lái)識(shí)別不同的高級(jí)層次特征。作為結(jié)果,訓(xùn)練時(shí)間大幅減少。所以當(dāng)你沒有足夠的數(shù)據(jù)或者訓(xùn)練的資源時(shí),遷移學(xué)習(xí)是非常有用的一個(gè)工具。
這篇文章只是展示了這些方法的一般概述。我建議閱讀下面這些文章以獲得對(duì)這些概念更詳細(xì)的解釋:
Andrew Beam’s?“Deep Learning 101”Andrey Kurenkov’s?“A Brief History of Neural Nets and Deep Learning”Adit Deshpande’s?“A Beginner’s Guide to Understanding Convolutional Neural Networks”Chris Olah’s?“Understanding LSTM Networks”Algobean’s?“Artificial Neural Networks”Andrej Karpathy’s?“The Unreasonable Effectiveness of Recurrent Neural Networks”深度學(xué)習(xí)非常注重技術(shù),而對(duì)每一個(gè)新的想法卻沒有太多具體的解釋。大多數(shù)新的idea只是用實(shí)驗(yàn)結(jié)果來(lái)證明它們的工作。深度學(xué)習(xí)就像玩樂高,掌握它有一定的挑戰(zhàn)性,但是入門還是很容易的。
- 蜜度索驥:以跨模態(tài)檢索技術(shù)助力“企宣”向上生長(zhǎng)
- 密態(tài)計(jì)算技術(shù)助力農(nóng)村普惠金融 螞蟻密算、網(wǎng)商銀行項(xiàng)目入選大數(shù)據(jù)“星河”案例
- 專利糾紛升級(jí)!Netflix就虛擬機(jī)專利侵權(quán)起訴博通及VMware
- 兩大難題發(fā)布!華為啟動(dòng)2024奧林帕斯獎(jiǎng)全球征集
- 2025年工業(yè)軟件市場(chǎng)格局:7個(gè)關(guān)鍵統(tǒng)計(jì)數(shù)據(jù)與分析
- Commvault持續(xù)業(yè)務(wù)策略:應(yīng)對(duì)現(xiàn)代數(shù)據(jù)保護(hù)挑戰(zhàn)的新范式
- 2025年網(wǎng)絡(luò)安全主要趨勢(shì)
- 2025年值得關(guān)注的數(shù)據(jù)中心可持續(xù)發(fā)展趨勢(shì)
- 量子計(jì)算火熱,投資者又在大舉尋找“量子概念股”
- 從量子威脅到人工智能防御:2025年網(wǎng)絡(luò)安全將如何發(fā)展
- 后人工智能時(shí)代:2025年,在紛擾中重塑數(shù)據(jù)、洞察和行動(dòng)
免責(zé)聲明:本網(wǎng)站內(nèi)容主要來(lái)自原創(chuàng)、合作伙伴供稿和第三方自媒體作者投稿,凡在本網(wǎng)站出現(xiàn)的信息,均僅供參考。本網(wǎng)站將盡力確保所提供信息的準(zhǔn)確性及可靠性,但不保證有關(guān)資料的準(zhǔn)確性及可靠性,讀者在使用前請(qǐng)進(jìn)一步核實(shí),并對(duì)任何自主決定的行為負(fù)責(zé)。本網(wǎng)站對(duì)有關(guān)資料所引致的錯(cuò)誤、不確或遺漏,概不負(fù)任何法律責(zé)任。任何單位或個(gè)人認(rèn)為本網(wǎng)站中的網(wǎng)頁(yè)或鏈接內(nèi)容可能涉嫌侵犯其知識(shí)產(chǎn)權(quán)或存在不實(shí)內(nèi)容時(shí),應(yīng)及時(shí)向本網(wǎng)站提出書面權(quán)利通知或不實(shí)情況說(shuō)明,并提供身份證明、權(quán)屬證明及詳細(xì)侵權(quán)或不實(shí)情況證明。本網(wǎng)站在收到上述法律文件后,將會(huì)依法盡快聯(lián)系相關(guān)文章源頭核實(shí),溝通刪除相關(guān)內(nèi)容或斷開相關(guān)鏈接。